Smart Speaker | Proximity Potentiometer Working Prototype

A direct follow up to this post: https://esologic.com/?p=984


First, here’s a video:

I got the digital potentiometer working! It was very simple using the SPI library built into the Arduino software. All you have to do is address the chip and then write it a value between 0 and 255 to set the resistance value. Here is the code for this version, I’ve cleaned it up a bit since last time:


#include <SPI.h> //for using the digital pot

const int slaveSelectPin = 10; //for SPI, from example code

//Shift Register Setup, taken from www.bildr.og
int SER_Pin = 7;   //pin 14 on the 75HC595
int RCLK_Pin = 8;  //pin 12 on the 75HC595
int SRCLK_Pin = 9; //pin 11 on the 75HC595
#define number_of_74hc595s 4 //How many of the shift registers - change this
#define numOfRegisterPins number_of_74hc595s * 8
boolean registers[numOfRegisterPins];

int IR_rangefinder = 0; //The pin attached to the rangefinder

int detect_led = 2;
int setlevelMode0_led = 3;
int setlevelMode1_led = 4;
int seeking_led = 6;

int check_val = 8; //The arbitrary position above the sensor that indicates a "check" - the position that must be held in order to change the volume
int cycle_delay = 30; //a universal delay time for refreshing the check functions

void setup(){
  
  //shift register setup
  pinMode(SER_Pin, OUTPUT);
  pinMode(RCLK_Pin, OUTPUT);
  pinMode(SRCLK_Pin, OUTPUT);
  clearRegisters();
  writeRegisters();

  //spi setup
  pinMode (slaveSelectPin, OUTPUT);
  SPI.begin(); 

  //general LED's
  pinMode(detect_led, OUTPUT);
  pinMode(setlevelMode0_led, OUTPUT);
  pinMode(setlevelMode1_led, OUTPUT);
  pinMode(seeking_led, OUTPUT);
  
  //Serial setup
  Serial.begin(9600);  
}

//integers to remember values off of the IR sensor. 
int prelevel_0 = 0;
int prelevel_1 = 0;
int prelevel_2 = 0;
int prelevel_3 = 0;
int prelevel_4 = 0;
int prelevel_5 = 0;
int prelevel_6 = 0;
int prelevel_7 = 0;
int prelevel_8 = 0;
int prelevel_9 = 0;

int pre_positions[10] = {prelevel_0, prelevel_1, prelevel_2, prelevel_3, prelevel_4, prelevel_5, prelevel_6, prelevel_7, prelevel_8, prelevel_9}; // an array holding the positions

void loop(){
  
  /*
  
  The system works by sampling the sensor a number of times. It puts these values into an array. 
  Once all sample have been made, each value is compared to a like value. If every && evaluates to true, this means whatever object above the sensor has been there for the "cycle_delay" * the number of comparisions made.
  It will confirm that the user wants their hand the be there and it was not acciential. 
  
  Think of the following loop as the ambient mode, the user can't adjust the volume from here, but they can enter the mode where they can adjust the volume.
  It has much less precision by design. 
  
  */
  
  for(int i = 0; i <= 9; i = i + 1){
    writebargraph(0,map(analogRead(IR_rangefinder),20,600,0,9));
    pre_positions[i] = map(analogRead(IR_rangefinder),20,600,0,9);
    if(pre_positions[i] == check_val){
      Serial.println("Check Detected");
      digitalWrite(detect_led, HIGH);
    }
    else {
     digitalWrite(detect_led, LOW);  
    }
    delay(cycle_delay);
  } 
  for(int i = 0; i <= 9; i = i + 1){
    Serial.print(pre_positions[i]);
    Serial.print(",");
  } 
  
  //Once it has been determined that the object above the sensor has been there for a long enough time, the system enters the secondary level set mode. 
  if (pre_positions[0] == check_val && pre_positions[1] == check_val && pre_positions[2] == check_val && pre_positions[3] == check_val && pre_positions[4] == check_val && pre_positions[5] == check_val && pre_positions[6] == check_val && pre_positions[7] == check_val && pre_positions[8] == check_val && pre_positions[9] == check_val  ){
    Serial.print(" - Pre Level Set");
    Serial.println("");
    delay(500);
    setlevel(); 
    delay(500);
  }
  else {
    Serial.println(" - No Set");
  }

}


void setlevel(){
  
  /*
  
  Very similar to the above topology. This version is much more precise, and has 30 comparison samples as opposed to 10. 
  It also writes to the digital potentiometer as well at the the same time as the bar graph. 
  
  */
  
  int level0 = 0;
  int level1 = 0;
  int level2 = 0;
  int level3 = 0;
  int level4 = 0;
  int level5 = 0;
  int level6 = 0;
  int level7 = 0;
  int level8 = 0;
  int level9 = 0;
  int level10 = 0;
  int level11 = 0;
  int level12 = 0;
  int level13 = 0;
  int level14 = 0;
  int level15 = 0;
  int level16 = 0;
  int level17 = 0;
  int level18 = 0;
  int level19 = 0;
  int level20 = 0;
  int level21 = 0;
  int level22 = 0;
  int level23 = 0;
  int level24 = 0;
  int level25 = 0;
  int level26 = 0;
  int level27 = 0;
  int level28 = 0;
  int level29 = 0;
  
  int positions[30] = { level0, level1, level2, level3, level4, level5, level6, level7, level8, level9, level10, level11, level12, level13, level14, level15, level16, level17, level18, level19, level20, level21, level22, level23, level24, level25, level26, level27, level28, level29};
  
  digitalWrite(setlevelMode1_led, LOW);
  digitalWrite(setlevelMode2_led, LOW);  
  
  boolean seeking = true;
  
  while(seeking == true){
    for(int i = 0; i <= 29; i = i + 1){
      writebargraph(1,map(analogRead(IR_rangefinder),20,600,0,19));
      digitalpot(map(analogRead(IR_rangefinder),20,600,0,255)); //Writes to digital pot
      positions[i] = map(analogRead(IR_rangefinder),20,600,0,19);
      Serial.print(positions[i]);
      Serial.print(",");
      delay(cycle_delay);
    }  
  
  
  //Instead of comparing to a predetermined value, it compares it to the first value sampled. If this if statement is true, it means the users hand has stopped moving, indicating they would like to set the volume at that position.
  if (positions[0] == positions[0] && positions[1] == positions[0] && positions[2] == positions[0] && positions[3] == positions[0] && positions[4] == positions[0] && positions[5] == positions[0] && positions[6] == positions[0] && positions[7] == positions[0] && positions[8] == positions[0] && positions[9] == positions[0] && positions[10] == positions[0] && positions[11] == positions[0] && positions[12] == positions[0] && positions[13] == positions[0] && positions[14] == positions[0] && positions[15] == positions[0]  ){
     Serial.print(" - Level Set");
     digitalWrite(setlevelMode1_led, HIGH);
     seeking = false; //Stops the loop and holds the last value on the bar graph and digital pot. 
   }
   else {
     Serial.print(" - No Set");
     digitalWrite(setlevelMode1_led, LOW);
   }
   Serial.println("");
  }
}

//This function will write to the shift registers -> the bar graph. It will write all of the values below the one specified HIGH and all above LOW. It also allows multiple sets of bar graphs
void writebargraph(int set, int led){
  if(set == 0){
    for(int i = 0; i <= 9; i = i + 1){
      if(i <= led){
                
        setRegisterPin(i, HIGH);
        writeRegisters();
      }
      else if(i > led){
        
        setRegisterPin(i, LOW);
        writeRegisters();
      } 
     }
   }
  if(set == 1){
    for(int k = 10; k <= 29; k = k + 1){
      if(k <= 10 + led){
        setRegisterPin(k, HIGH);
        writeRegisters();
      }
      else if(k > 10 + led){
        setRegisterPin(k, LOW);
        writeRegisters();
      } 
    }
  }
}

//A very simple function to write values to the Digital Pot
void digitalpot(int value){
  digitalWrite(slaveSelectPin,LOW);
  SPI.transfer(0); // enables the chip
  SPI.transfer(value);
  digitalWrite(slaveSelectPin,HIGH);
}


//SHIFT REGISTER FUNCTIONS. 
//set all register pins to LOW
void clearRegisters(){
  for(int i = numOfRegisterPins - 1; i >=  0; i--){
     registers[i] = LOW;
  }
} 
//Set and display registers
//Only call AFTER all values are set how you would like (slow otherwise)
void writeRegisters(){
  digitalWrite(RCLK_Pin, LOW);
  for(int i = numOfRegisterPins - 1; i >=  0; i--){
    digitalWrite(SRCLK_Pin, LOW);
    int val = registers[i];
    digitalWrite(SER_Pin, val);
    digitalWrite(SRCLK_Pin, HIGH);
  }
  digitalWrite(RCLK_Pin, HIGH);
}
//set an individual pin HIGH or LOW
void setRegisterPin(int index, int value){
  registers[index] = value;
}

If you have questions about the code please leave it in the comments.

Smart Speaker | Proximity Potentiometer Proof of Concept

New project! First, here’s a video:

This is the proof of concept for the volume control of the speaker system. In it’s final form, this sensor will be exposed to the outside and will allow users to control the volume without opening the system, preserving the fidelity of the inside. For example, imagine a user is at the beach and wants to change the volume but they have sand covered hands or wet hands. This system will solve that problem.

The sensor is the Sharp GP2Y0A41SK0F. Here are some very very macro shots of sensors inner workings.

But now for what you came here for, the code. It’s very poorly commented as this is just a prototype, but it’s better than nothing. As this project progresses I’ll posted updated versions of this code.

This demo also relies heavily this shift register. I still haven’t decided if i’m going to use a buzzer to interact with the user or if I’m going to use these bar graphs.

int SER_Pin = 10;   //pin 14 on the 75HC595
int RCLK_Pin = 11;  //pin 12 on the 75HC595
int SRCLK_Pin = 12; //pin 11 on the 75HC595

//How many of the shift registers - change this
#define number_of_74hc595s 4 

//do not touch
#define numOfRegisterPins number_of_74hc595s * 8

boolean registers[numOfRegisterPins];

int detect_led = 2;

int setlevelMode0_led = 3;
int setlevelMode1_led = 4;
int setlevelMode2_led = 5;

int seeking_led = 6;

int check_val = 8;

void setup(){
  pinMode(SER_Pin, OUTPUT);
  pinMode(RCLK_Pin, OUTPUT);
  pinMode(SRCLK_Pin, OUTPUT);
  //reset all register pins
  clearRegisters();
  writeRegisters();

  pinMode(detect_led, OUTPUT);

  pinMode(setlevelMode0_led, OUTPUT);
  pinMode(setlevelMode1_led, OUTPUT);
  pinMode(setlevelMode2_led, OUTPUT);

  pinMode(seeking_led, OUTPUT);

  Serial.begin(9600);
}

int prelevel_0 = 0;
int prelevel_1 = 0;
int prelevel_2 = 0;
int prelevel_3 = 0;
int prelevel_4 = 0;
int prelevel_5 = 0;
int prelevel_6 = 0;
int prelevel_7 = 0;
int prelevel_8 = 0;
int prelevel_9 = 0;

int pre_positions[10] = {prelevel_0, prelevel_1, prelevel_2, prelevel_3, prelevel_4, prelevel_5, prelevel_6, prelevel_7, prelevel_8, prelevel_9};

void loop(){
  for(int i = 0; i <= 9; i = i + 1){
    writebargraph(0,map(analogRead(0),20,600,0,9));
    pre_positions[i] = map(analogRead(0),20,600,0,9);
    if(pre_positions[i] == check_val){
      Serial.println("Check Detected");
      digitalWrite(detect_led, HIGH);
    }
    else {
     digitalWrite(detect_led, LOW);
    }
    delay(30);
  }
  for(int i = 0; i <= 9; i = i + 1){
    Serial.print(pre_positions[i]);
    Serial.print(",");
  } 

  if (pre_positions[0] == check_val && pre_positions[1] == check_val && pre_positions[2] == check_val && pre_positions[3] == check_val && pre_positions[4] == check_val && pre_positions[5] == check_val && pre_positions[6] == check_val && pre_positions[7] == check_val && pre_positions[8] == check_val && pre_positions[9] == check_val  ){
    Serial.print(" - Pre Level Set");
    Serial.println("");
    delay(500);
    setlevel();
    delay(500);
  }
  else {
    Serial.println(" - No Set");
  }

}

//set all register pins to LOW
void clearRegisters(){
  for(int i = numOfRegisterPins - 1; i >=  0; i--){
     registers[i] = LOW;
  }
} 

//Set and display registers
//Only call AFTER all values are set how you would like (slow otherwise)
void writeRegisters(){
  digitalWrite(RCLK_Pin, LOW);
  for(int i = numOfRegisterPins - 1; i >=  0; i--){
    digitalWrite(SRCLK_Pin, LOW);
    int val = registers[i];
    digitalWrite(SER_Pin, val);
    digitalWrite(SRCLK_Pin, HIGH);
  }
  digitalWrite(RCLK_Pin, HIGH);
}

//set an individual pin HIGH or LOW
void setRegisterPin(int index, int value){
  registers[index] = value;
}

void writebargraph(int set, int led){
  if(set == 0){
    for(int i = 0; i <= 9; i = i + 1){
      if(i <= led){

        setRegisterPin(i, HIGH);
        writeRegisters();
      }
      else if(i > led){

        setRegisterPin(i, LOW);
        writeRegisters();
      }
     }
   }
  if(set == 1){
    for(int k = 10; k <= 29; k = k + 1){
      if(k <= 10 + led){
        setRegisterPin(k, HIGH);
        writeRegisters();
      }
      else if(k > 10 + led){
        setRegisterPin(k, LOW);
        writeRegisters();
      }
    }
  }

}

void setlevel(){

  int level0 = 0;
  int level1 = 0;
  int level2 = 0;
  int level3 = 0;
  int level4 = 0;
  int level5 = 0;
  int level6 = 0;
  int level7 = 0;
  int level8 = 0;
  int level9 = 0;
  int level10 = 0;
  int level11 = 0;
  int level12 = 0;
  int level13 = 0;
  int level14 = 0;
  int level15 = 0;
  int level16 = 0;
  int level17 = 0;
  int level18 = 0;
  int level19 = 0;
  int level20 = 0;
  int level21 = 0;
  int level22 = 0;
  int level23 = 0;
  int level24 = 0;
  int level25 = 0;
  int level26 = 0;
  int level27 = 0;
  int level28 = 0;
  int level29 = 0;

  int positions[30] = { level0, level1, level2, level3, level4, level5, level6, level7, level8, level9, level10, level11, level12, level13, level14, level15, level16, level17, level18, level19, level20, level21, level22, level23, level24, level25, level26, level27, level28, level29};

  digitalWrite(setlevelMode1_led, LOW);
  digitalWrite(setlevelMode2_led, LOW);  

  boolean seeking = true;

  while(seeking == true){
    for(int i = 0; i <= 29; i = i + 1){
      writebargraph(1,map(analogRead(0),20,600,0,19));
      positions[i] = map(analogRead(0),20,600,0,19);
      Serial.print(positions[i]);
      Serial.print(",");
      delay(10);
    }  

  if (positions[0] == positions[0] && positions[1] == positions[0] && positions[2] == positions[0] && positions[3] == positions[0] && positions[4] == positions[0] && positions[5] == positions[0] && positions[6] == positions[0] && positions[7] == positions[0] && positions[8] == positions[0] && positions[9] == positions[0] && positions[10] == positions[0] && positions[11] == positions[0] && positions[12] == positions[0] && positions[13] == positions[0] && positions[14] == positions[0] && positions[15] == positions[0]  ){
     Serial.print(" - Level Set");
     digitalWrite(setlevelMode1_led, HIGH);
     seeking = false;
   }

   else {
     Serial.print(" - No Set");
     digitalWrite(setlevelMode1_led, LOW);
   }

   Serial.println("");

  }

}

Here are some photos of the board if you want to try and work out the schematic:

PiPlanter 2 | Little Plants 1 / Germination Setup

The plants are coming along quite nicely, here is an album of images:

As for my grow setup in this stage, it’s pretty simple. Basically I keep the two desk lamps I have from that area on 24/7 and on the plants. Every morning I put about a half gallon into each of the trays. I also spray about 8oz onto the surface of the plants. Working pretty well so far, all of this growth is only after a week and two days.

PiPlanter 2 | Update / Dirt / Germs

Hi! In order to do PiPlanter 2 at the scale I want, as always, I need money. I’m applying to this grant to hopefully take this project to unreal new heights. In order to apply, one of the component is assembling a budget. In order to do that though, I need to “complete” the whole project… in my head. I have to be able to think of exactly how I want to do the project. From PCB design to pump system, I have to plan it all in order to assemble a realistic budget. There is a lot of good work that comes with this, like schematics and the budget itself. I’ll for sure upload all of the documentation.

On a more stimulating note: I’ve planted the tomato plants in the same manor that I did last summer and here are some pictures of the growth so far.

Here is the dirt and planted seeds:

Here are some very small sprouts that have developed in the last two days.

PiPlanter 2 | Getting Started Again

So I have decided to re write the PiPlanter from the ground up. In essence, it will accomplish the same exact thing but I’d like it to be a lot more of a stable platform to expand upon in the future. I’d also like PiPlanter to be professional enough to bring to market. First off there are a few things you’d need install & a few modifications you’d need to make to Raspian. First thing’s first, you’ll need to enable SPI in the kernel so:

sudo vi /etc/modprobe.d/raspi-blacklist.conf

Comment out the spi-bcm2708 line so it looks like this:

#blacklist spi-bcm2708

Then run this to make it more permanent.

sudo modprobe spi-bcm2708

Now for the real meat of it. You’ll need these packages for SPI and the WiringPi library makes things a whole lot easier for us. This program also relies very heavily

sudo apt-get install python-imaging python-imaging-tk python-pip python-dev git
sudo pip install spidev
sudo pip install wiringpi
sudo apt-get install apache2
sudo apt-get install mysql-server
sudo apt-get install php5
sudo apt-get install php5-mysql
sudo pip install tweepy</pre>
<pre style="color: #333333;">sudo pip install apscheduler</pre>
<pre>

Revised python code next post.

PiPlanter | Goals and changes

So I am 151 miles away from the PiPlanter. But thanks to the internet, modern day routers, and wifi dongles I can pretty much control everything about it from here.

That being said, there are a few things I would like to change about the project. First of all, the program itself needs to be more modular. Reason being is that the core program should never stop running, even if changes need to be made. I should be able to screen the main program once, and then never have to stop it ever. This would be advantageous in a few ways but the main example is that the plants will require more water as they get larger, and then less once they start yielding fruit. I could script this, but I think that it would be best to be able to edit the ‘ontime’ value from the program without having to stop the whole process.

I’ll keep y’all posted as I try to implement this.

Multiple Project Update

Hi guys

So I’ve been eeking out all that I can of my last few days of summer, and there hasn’t been much rain or bad weather at all. As a result, I’m not posting much at all.

Doesn’t mean I’m not working though, I’ve been doing a couple things.

First thing’s first my speaker is done. I just need to get a bunch of video edited, and a big post written.

Secondly I’m still working really hard on my dead simple flickr uploader (dsfu). The cool thing about this project is that it has the potential to be very useful to quite a number of people, so I’m trying to make sure that it is very stable, and very easy to duplicate. This means for the most part I’ve been doing a series of 4000+ photo uploads trying to break my script. It’s happened a lot, and you can check my twitter feed to see my brain melt as I try and figure out the problem. This project won’t necessarily be “complete” until I have a 3D printer at my disposal to create the enclosure I want.

As for the PiPlanter, it’s still a work in progress. The update I did with my last post was a start to something really complete it is in no way finished. I still need to move the camera, and the plants.

Thanks for reading!

PiPlanter | Big Overhaul Update

Okay! So I leave for college in less than 30 days, but I’d like to make sure my tomatoes to continue to grow once I leave so I’ve taken some steps to make sure that my departure goes smoothly.

Here’s a video of my revised setup:

There are a few key differences between this setup and my previous one:

The main one is that the watering system has been 100% re-vamped. The water distribution happens via a hose with holes in it instead of using the tray at the bottom of the plant grid in the previous video.

It also takes, uploads and tweets a picture of itself using a raspberry pi camera module.

It also creates a new mysql table every two weeks, and in turn, renders a new kind of graph. The renderscript.php file receives an argument from the python script which is the table code.

Here’s the python script:

#Timing setup
from datetime import datetime
from apscheduler.scheduler import Scheduler
import time
import datetime
import sys
import os




now =datetime.datetime.now()




#import logging #if you start getting logging errors, uncomment these two lines
#logging.basicConfig()




#GPIO setup
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.cleanup()
pin = 26 #pin for the adc
GPIO.setup(pin, GPIO.OUT)
NPNtrans = 3 #the pin for the npn transistor
GPIO.setup(NPNtrans, GPIO.OUT)
sampleLED = 5 #the indicator LED
GPIO.setup(sampleLED, GPIO.OUT)
pump = 7 #pin for the pump
GPIO.setup(pump, GPIO.OUT)
GPIO.output(pump, False)




#the adc's SPI setup
import spidev
spi = spidev.SpiDev()
spi.open(0, 0)




#sets up the program's ability to write to a mysql database
import MySQLdb
con = MySQLdb.connect('localhost','piplanter_user','piplanter_pass','piplanter');
cursor = con.cursor()




#tweepy setup, you must use the keys given to you when you create your app
import tweepy
consumer_key=""
consumer_secret=""
access_token=""
access_token_secret=""
#"logs in" to twitter, 
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)




#Flickr Setup
import flickrapi
api_key = ''
api_secret = ''
flickr = flickrapi.FlickrAPI(api_key, api_secret, format='json')
(token, frob) = flickr.get_token_part_one(perms='write')
if not token: raw_input("Press ENTER after you authorized this program")
flickr.get_token_part_two((token, frob))




#Variable Setup
ontime = 60




global table_number
table_number = 0




#fuction that can read the adc
def readadc(adcnum): 
# read SPI data from MCP3008 chip, 8 possible adc's (0 thru 7)
    if adcnum > 7 or adcnum < 0:
        return -1
    r = spi.xfer2([1, 8 + adcnum << 4, 0])
    adcout = ((r[1] & 3) << 8) + r[2]
    return adcout
     	
def water():
	
	print "===== Starting Watering Process ====="
	
	GPIO.output(NPNtrans, True)
	GPIO.output(sampleLED, True)
	
	time.sleep(1)
	
	sensor1_before = readadc(0)
	sensor2_before = readadc(1)
	sensor3_before = readadc(2)
	sensor4_before = readadc(3)
	
	before = "WATERING START / Moisture Before - " + "Sensor 1:" + str(sensor1_before) + " Sensor 2:" + str(sensor2_before) + " Sensor 3:" + str(sensor3_before) + " Sensor 4:" + str(sensor4_before) + " - Average:" + str((float(sensor1_before+sensor2_before+sensor3_before+sensor4_before)/4)) 
	api.update_status(before) 
	print before
	
	GPIO.output(pump, True)
	time.sleep(ontime)
	GPIO.output(pump, False)
	
	time.sleep(60) #gives the water time to penetrate the soil
	
	sensor1_after = readadc(0)
	sensor2_after = readadc(1)
	sensor3_after = readadc(2)
	sensor4_after = readadc(3)
	
	after = "WATERING COMPLETED / Moisture After - " + "Sensor 1:" + str(sensor1_after) + " Sensor 2:" + str(sensor2_after) + " Sensor 3:" + str(sensor3_after) + " Sensor 4:" + str(sensor4_after) + " - Average: " + str((float(sensor1_after+sensor2_after+sensor3_after+sensor4_after)/4)) 
	api.update_status(after) 
	print after
	
	GPIO.output(NPNtrans, False)
	GPIO.output(sampleLED, False)
	
	print "====== Watering Process Complete ====="    	
    	
def hourlyUpdate():
	GPIO.output(pump, False)
	print "----------start----------\n"
	
	GPIO.output(NPNtrans, True)
	GPIO.output(sampleLED, True)
	
	time.sleep(1)
	
	sampleTime = time.ctime()
	
	mst1 = 1024-readadc(0)
	mst2 = 1024-readadc(1)
	mst3 = 1024-readadc(2)
	mst4 = 1024-readadc(3)
	
	pot1 = readadc(4)
	
	ldr1 = readadc(5)
	
	millivolts = readadc(6)*(3300.0/1024.0)
	temp_c = ((millivolts - 100.0)/10)-40.0
	tmp1 = (temp_c * 9.0 / 5.0) + 32
	
	print 'Polling Probes \n'
	
	#prints debug info to console
	print sampleTime,"|","MST1:",mst1,"MST2:",mst2,"MST3:",mst3,"MST4:",mst4,"Pot1:",pot1,"LDR1:",ldr1,"TMP1:",tmp1 #prints the debug info
	
	global table_number
	print 'Adding Data To Table: ' + str(table_number)




	#adds the data to the mysql table
	global table_number
	cursor.execute('INSERT INTO piplanter_table_'+ table_code +'(Time,mst1_V,mst2_V,mst3_V,mst4_V,pot1_V,ldr1_V,tmp1_F) VALUES(%s,%s,%s,%s,%s,%s,%s,%s)',(sampleTime,mst1,mst2,mst3,mst4,pot1,ldr1,tmp1))
	con.commit() #this is important for live updating
	GPIO.output(NPNtrans, False) #turns the probes off
	print 'Data Collected, Disengaging Probes \n'
	
	
	#takes a picture of the plants
	print 'Taking Picture with Raspberry Pi Camera Board'
	picture_dir = '/home/pi/documents/piplanter/images/'
	os.system('raspistill -o ' + picture_dir + str(time.strftime('%m-%d-%y_%H-%M-%S')) + '.jpg')
	print 'Capture Successfull: ' + picture_dir + str(time.strftime('%m-%d-%y_%H-%M-%S')) + '.jpg'
		
	#finds the newest image in the directory
	print '\nUploading Picture To Flickr'
	picture_allfiles = sorted(os.listdir(picture_dir), key=lambda p: os.path.getctime(os.path.join(picture_dir, p)))
	picture_newest = picture_dir+picture_allfiles[-1]
	print 'File for upload: ' + picture_newest #prints location and file to console
	
	#uploads the picture of the plants to flickr
	picture_title = 'Picture @ ' + str(sampleTime)
	picture_response = flickr.upload(filename=picture_newest, title=picture_title, format='etree') #uploads the file to flickr
	picture_photoID = picture_response.find('photoid').text #gets the id of the photo for constructing a url
	print 'Picture Upload Successful, Photo ID: ' + picture_photoID + '\n' #more debug info
	
	time.sleep(10)
	
	#renders the image of the graph
	print "Graph Render Start"
	global table_code
	os.system('php /opt/bitnami/wordpress/piplanter/renderScript.php ' + table_code ) #renders the .png file
	print "Graph Render Complete \n"
	
	#finds the newest image in the directory
	print 'Uploading Graph To Flickr'
	graph_allfiles = sorted(os.listdir('/opt/bitnami/wordpress/piplanter/renders/'), key=lambda p: os.path.getctime(os.path.join('/opt/bitnami/wordpress/piplanter/renders/', p)))
	graph_newest = '/opt/bitnami/wordpress/piplanter/renders/'+graph_allfiles[-1]
	print 'File for upload: ' + graph_newest #prints location and file to console
	
	graph_title = 'Graph @ ' + str(sampleTime)
	graph_response = flickr.upload(filename=graph_newest, title=graph_title, format='etree') #uploads the file to flickr
	graph_photoID = graph_response.find('photoid').text #gets the id of the photo for constructing a url
	print 'Graph Upload Successful, Photo ID: ' + graph_photoID + '\n' #more debug info
	
	#tweets the images and data
	send = 'Brghtnss: ' + str(format((((float(ldr1)/1024)*100)),'.0f')) + '% / ' + 'Tmprtr: ' + str(format(tmp1,'.0f')) + ' Dg F' + ' / Avg Plnt Moisture: '+  str(format(float((float((mst1+mst2+mst3+mst4)/4)/1024)*100),'.0f')) + '%' + ' Graph: ' + 'http://www.flickr.com/photos/97350286@N08/'+ str(graph_photoID) + ' Pic: ' + 'http://www.flickr.com/photos/97350286@N08/' + str(picture_photoID) #builds the text of the tweet
	print "Tweeting:" , send  #for debug purposes
	api.update_status(send) #tweets the tweet
		
	time.sleep(.1)
	GPIO.output(sampleLED, False)
	
	print "\n-----------end-----------"
	
def table_update():
	
	global table_number
	table_number = table_number + 1
	
	global table_code
	table_code = str(time.strftime('%m_%d_%y_%H_%M_%S')) + '__' + str(table_number)
	print 'Creating Table: ' + table_code
	cursor.execute('USE piplanter')
	con.commit()
	cursor.execute('CREATE TABLE piplanter_table_'+ table_code +'(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY, Time VARCHAR(100), mst1_V VARCHAR(100), mst2_V VARCHAR(100), mst3_V VARCHAR(100), mst4_V VARCHAR(100), pot1_V VARCHAR(100), ldr1_V VARCHAR(100), tmp1_F VARCHAR(100) );')
	con.commit()




table_update()
hourlyUpdate()
	
scheduler = Scheduler(standalone=True)




scheduler.add_interval_job(hourlyUpdate, hours=1)
scheduler.add_interval_job(water, days=1)
scheduler.add_interval_job(table_update, weeks=2)




scheduler.start() #runs the program indefianately once every hour

Here’s the .php script:

<?php

/* Include all the classes */ 
include("/srv/www/lib/pChart/class/pData.class.php");
include("/srv/www/lib/pChart/class/pDraw.class.php");
include("/srv/www/lib/pChart/class/pImage.class.php");

$myData = new pData(); /* Create your dataset object */ 

$db = mysql_connect("localhost", "piplanter_user", "piplanter_pass"); //location of server, db username, db pass
mysql_select_db("piplanter", $db);

$Requete = "SELECT * FROM `piplanter_table_" . $argv[1] . "`"; //table name
$Result = mysql_query($Requete, $db);

/*This fetches the data from the mysql database, and adds it to pchart as points*/
while($row = mysql_fetch_array($Result))
{	
	$Time = $row["Time"];
	$myData->addPoints($Time,"Time");
	
	$mst1_V = $row["mst1_V"];
	$myData->addPoints($mst1_V,"mst1_V");
	$mst2_V = $row["mst2_V"];
	$myData->addPoints($mst2_V,"mst2_V");
	$mst3_V = $row["mst3_V"];
	$myData->addPoints($mst3_V,"mst3_V");
	$mst4_V = $row["mst4_V"];
	$myData->addPoints($mst4_V,"mst4_V");
	
	$ldr1_V = $row["ldr1_V"];
	$myData->addPoints($ldr1_V,"ldr1_V");
	
	$tmp1_F = $row["tmp1_F"];
	$myData->addPoints($tmp1_F,"tmp1_F");
}

$myData-> setSerieOnAxis("tmp1_F", 0); //assigns the data to the frist axis
$myData-> setAxisName(0, "Degrees F"); //adds the label to the first axis

$myData-> setSerieOnAxis("ldr1_V", 1);
$myData-> setAxisName(1, "LDR");

$myData-> setSerieOnAxis("mst1_V", 2);
$myData-> setSerieWeight("mst1_V",2);
$myData-> setSerieOnAxis("mst2_V", 2);
$myData-> setSerieOnAxis("mst3_V", 2);
$myData-> setSerieOnAxis("mst4_V", 2);
$myData-> setAxisName(2, "Relative Moisture");

$myData->setAbscissa("Time"); //sets the time data set as the x axis label

$myData-> setSerieWeight("mst1_V",1); //draws the line tickness
$myData->setPalette("mst1_V",array("R"=>58,"G"=>95,"B"=>205,"Alpha"=>80)); //sets the line color
$myData-> setSerieWeight("mst2_V",1);
$myData->setPalette("mst2_V",array("R"=>39,"G"=>64,"B"=>139,"Alpha"=>80));
$myData-> setSerieWeight("mst3_V",1);
$myData->setPalette("mst3_V",array("R"=>0,"G"=>34,"B"=>102,"Alpha"=>80));
$myData-> setSerieWeight("mst4_V",1);
$myData->setPalette("mst4_V",array("R"=>67,"G"=>110,"B"=>238,"Alpha"=>80));

$myData-> setSerieWeight("ldr1_V",2);
$myData-> setSerieTicks("ldr1_V", 4);

$myData-> setSerieWeight("tmp1_F",2);
$myData-> setSerieTicks("tmp1_F", 4);

$myPicture = new pImage(4000,500,$myData); /* Create a pChart object and associate your dataset */ 
$myPicture->setFontProperties(array("FontName"=>"/srv/www/lib/pChart/fonts/pf_arma_five.ttf","FontSize"=>6)); /* Choose a nice font */
$myPicture->setGraphArea(130,40,3900,300); /* Define the boundaries of the graph area */
$myPicture->drawScale(array("LabelRotation"=>320)); /* Draw the scale, keep everything automatic */ 

$Settings = array("R"=>250, "G"=>250, "B"=>250, "Dash"=>1, "DashR"=>0, "DashG"=>0, "DashB"=>0);

/*The combination makes a cool looking graph*/
$myPicture->drawPlotChart(array("DisplayValues"=>TRUE));
$myPicture->drawLineChart();
$myPicture->drawLegend(30,320); //adds the legend

//$date-> date("d-M-Y:H:i:s");

//$myPicture->autoOutput(); /* Build the PNG file and send it to the web browser */ 

$myPicture->render("/opt/bitnami/wordpress/piplanter/renders/".date("d-M-Y_H:i:s").".png");

?>

Thank you for reading!