I bought a wire rack from walmart and put the PiPlanter back inside my house. Hopefully the plants will live longer than they did last year so while I’m at college I can continue to develop on this model. Images below.
Tag: sensors
PiPlanter 2 | Solving Broken Pipe Errors [Errno 32] in Tweepy
If I haven’t mentioned it already, https://twitter.com/piplanter_bot IS the new twitter account for PiPlanter. Like last time, I’m using the tweepy library for python to handle all things twitter for the project. What I’m NOT using this time is Flickr. From a design point of view, it wasn’t worth it. It was too complicated and had too many things that could go wrong for me to continue using it. Twitter is more than capable of hosting images, and tweepy has a very simple method of passing these images to twitter. Recently I moved the whole setup indoors and mounted it all onto a shelf seen here and it came with a set of strange problems.
Long story short, what I think happened was that since I moved them to a different location, the complexity of the images increased, causing an increase in the size of the images themselves. A broken pipe error implies that the entirety of the package sent to twitter wasn’t sent, causing the tweet not to go through. I first started to suspect this problem after seeing this:
The graphs were going through just fine, but images were seeming to have a hard time. You can’t tell from this photo, but those tweets are hours apart as opposed to the 20 minutes they are supposed to be. Once I started having this problem, I bit the bullet and integrated logging into my project which produced this log:
[08-12-2014_11-21-20-PM] Debug: MySQL Tables Updated Simple [08-12-2014_11-21-20-PM] Debug: Debug Update: P_MST0: 87.10938, P_MST1: 89.64844, A_TMP0: 69.03711, A_LDR0: 70.99609 [08-12-2014_11-21-26-PM] Debug: Image Captured, High Quality = False, Image: /home/pi/PiPlanter2/images/dailys/CurrentImageDirectory_08_11_2014__06_58_32PM/0098.jpg [08-12-2014_11-21-26-PM] Debug: Attempt [0] To Tweet: Ambient Light: 70.6%, Ambient Temp: 69.0DF, Average Plant Mst: 88.5% https://esologic.com/?page_id=1042 , image = True [08-12-2014_11-21-57-PM] Debug: Tweet Failed, Retrying [08-12-2014_11-21-57-PM] Debug: Twitter Error: Failed to send request: [Errno 32] Broken pipe [08-12-2014_11-22-12-PM] Debug: Attempt [1] To Tweet: Ambient Light: 70.6%, Ambient Temp: 69.0DF, Average Plant Mst: 88.5% https://esologic.com/?page_id=1042 , image = True [08-12-2014_11-22-43-PM] Debug: Tweet Failed, Retrying [08-12-2014_11-22-43-PM] Debug: Twitter Error: Failed to send request: [Errno 32] Broken pipe [08-12-2014_11-22-58-PM] Debug: Attempt [2] To Tweet: Ambient Light: 70.6%, Ambient Temp: 69.0DF, Average Plant Mst: 88.5% https://esologic.com/?page_id=1042 , image = True [08-12-2014_11-23-30-PM] Debug: Tweet Failed, Retrying [08-12-2014_11-23-30-PM] Debug: Twitter Error: Failed to send request: [Errno 32] Broken pipe [08-12-2014_11-23-45-PM] Debug: Attempt [3] To Tweet: Ambient Light: 70.6%, Ambient Temp: 69.0DF, Average Plant Mst: 88.5% https://esologic.com/?page_id=1042 , image = True [08-12-2014_11-24-16-PM] Debug: Tweet Failed, Retrying [08-12-2014_11-24-16-PM] Debug: Twitter Error: Failed to send request: [Errno 32] Broken pipe [08-12-2014_11-24-31-PM] Debug: Attempt [4] To Tweet: Ambient Light: 70.6%, Ambient Temp: 69.0DF, Average Plant Mst: 88.5% https://esologic.com/?page_id=1042 , image = True [08-12-2014_11-25-03-PM] Debug: Tweet Failed, Retrying [08-12-2014_11-25-03-PM] Debug: Twitter Error: Failed to send request: [Errno 32] Broken pipe [08-12-2014_11-25-18-PM] Debug: Attempt [5] To Tweet: Ambient Light: 70.6%, Ambient Temp: 69.0DF, Average Plant Mst: 88.5% https://esologic.com/?page_id=1042 , image = True [08-12-2014_11-25-49-PM] Debug: Tweet Failed, Retrying [08-12-2014_11-25-49-PM] Debug: Twitter Error: Failed to send request: [Errno 32] Broken pipe [08-12-2014_11-26-04-PM] Debug: Attempt [6] To Tweet: Ambient Light: 70.6%, Ambient Temp: 69.0DF, Average Plant Mst: 88.5% https://esologic.com/?page_id=1042 , image = True [08-12-2014_11-26-36-PM] Debug: Tweet Failed, Retrying [08-12-2014_11-26-36-PM] Debug: Twitter Error: Failed to send request: [Errno 32] Broken pipe [08-12-2014_11-26-51-PM] Debug: Attempt [7] To Tweet: Ambient Light: 70.6%, Ambient Temp: 69.0DF, Average Plant Mst: 88.5% https://esologic.com/?page_id=1042 , image = True [08-12-2014_11-27-22-PM] Debug: Tweet Failed, Retrying [08-12-2014_11-27-22-PM] Debug: Twitter Error: Failed to send request: [Errno 32] Broken pipe [08-12-2014_11-27-37-PM] Debug: Attempt [8] To Tweet: Ambient Light: 70.6%, Ambient Temp: 69.0DF, Average Plant Mst: 88.5% https://esologic.com/?page_id=1042 , image = True [08-12-2014_11-29-07-PM] Debug: Tweet Failed, Retrying [08-12-2014_11-29-07-PM] Debug: Twitter Error: Failed to send request: The write operation timed out [08-12-2014_11-29-22-PM] Debug: Attempt [9] To Tweet: Ambient Light: 70.6%, Ambient Temp: 69.0DF, Average Plant Mst: 88.5% https://esologic.com/?page_id=1042 , image = True [08-12-2014_11-29-54-PM] Debug: Tweet Failed, Retrying [08-12-2014_11-29-54-PM] Debug: Twitter Error: Failed to send request: [Errno 32] Broken pipe [08-12-2014_11-30-09-PM] Debug: Tweet Was a Failure
Hours and hours of failed tweets due to “[Errno 32] Broken pipe”. I tried a lot of things, I figured out that it was the size of the images after seeing this:
Photos that were simple in nature had no problem being sent. After scaling the image size down, I’ve had absolutely no problem sending tweets.
If you are tweeting images with tweepy in python and getting intermediate Broken pipe errors, decrease the size of your image.
Thanks for reading.
PiPlanter 2 | Progress Update
I’m almost done with a very stable version of the Python code running the PiPlanter. There are many specific differences between this version of the python code and the version I wrote and implemented last summer, but the main one is that I tried to write functions for pretty much every task I wanted to do, and made each routine much more modular instead of one long line after line block to do each day. This took significantly longer to do (thus the lack of updates, sorry) but is much more expandable going forward. Below is the new version of the code, but by no means am I an expert programmer. The following code seems to work very well for what I want it to do.
import MySQLdb from datetime import datetime import time from time import sleep import os import sys import spidev import RPi.GPIO as GPIO import tweepy import logging logging.basicConfig() from apscheduler.scheduler import Scheduler import subprocess def ConsoleDebug(input): debug = '[' + datetime.now().strftime("%m-%d-%Y_%I-%M-%S-%p") + '] Debug: ' + input print debug file = open(str(os.getcwd()) + "/log.txt", "a") file.write(debug + "\n") file.close() def FirstTimeSetup(): global cycle ConsoleDebug('---------------- NEW INSTANCE OF PIPLANTER ----------------') MySQL_Commands = {1 : 'CREATE DATABASE IF NOT EXISTS PiPlanter_DB', 2: "GRANT ALL ON `PiPlanter_DB`.* TO 'piplanter'@'localhost' IDENTIFIED BY 'password'", 3: 'USE PiPlanter_DB' } for i in MySQL_Commands.itervalues(): ConsoleDebug('MYSQL COMMAND: ' + i) cursor.execute(i) MySQLTableSetup(False,'Daily',True) VisualLocationSetup(True,'dontcare') ConsoleDebug('Setup Complete') cycle = 0 def MySQLTableSetup(full,kind,first): global MySQL_Tables now = datetime.now().strftime("%m_%d_%Y__%I_%M_%S%p") if first == True: MySQL_Tables = { 'MySQLTable_Daily' : 'DailyTable' + now, 'MySQLTable_Weekly' : 'WeeklyTable' + now, 'MySQLTable_Monthly' : 'MonthlyTable' + now} if full == False: CreateTables = {0: "CREATE TABLE " + MySQL_Tables['MySQLTable_Daily'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))", 1 : "CREATE TABLE " + MySQL_Tables['MySQLTable_Weekly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))" , 2 : "CREATE TABLE " + MySQL_Tables['MySQLTable_Monthly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))"} for i in CreateTables.itervalues(): ConsoleDebug('MYSQL COMMAND: ' + i) cursor.execute(i) if full == True: CreateTables = {0: "CREATE TABLE " + MySQL_Tables['MySQLTable_Daily'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))", 1:"CREATE TABLE " + MySQL_Tables['MySQLTable_Weekly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))" , 2:"CREATE TABLE " + MySQL_Tables['MySQLTable_Monthly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))" } for i in CreateTables.itervalues(): ConsoleDebug('MYSQL COMMAND: ' + i) cursor.execute(i) elif first == False: if kind == 'Daily': ConsoleDebug('Daily Database Name Has Been Updated') MySQL_Tables['MySQLTable_Daily'] = 'DailyTable_' + now ConsoleDebug(MySQL_Tables['MySQLTable_Daily']) if full == False: CreateTable = "CREATE TABLE " + MySQL_Tables['MySQLTable_Daily'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))" elif full == True: CreateTable = "CREATE TABLE " + MySQL_Tables['MySQLTable_Daily'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))" elif kind == 'Weekly': ConsoleDebug('Daily Database Name Has Been Updated') MySQL_Tables['MySQLTable_Weekly'] = 'WeeklyTable_' + now ConsoleDebug(MySQL_Tables['MySQLTable_Weekly']) if full == False: CreateTable = "CREATE TABLE " + MySQL_Tables['MySQLTable_Weekly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))" elif full == True: CreateTable = "CREATE TABLE " + MySQL_Tables['MySQLTable_Weekly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))" elif kind == 'Monthly': ConsoleDebug('Daily Database Name Has Been Updated') MySQL_Tables['MySQLTable_Monthly'] = 'MonthlyTable_' + now ConsoleDebug(MySQL_Tables['MySQLTable_Monthly']) if full == False: CreateTable = "CREATE TABLE " + MySQL_Tables['MySQLTable_Monthly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))" elif full == True: CreateTable = "CREATE TABLE " + MySQL_Tables['MySQLTable_Monthly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))" ConsoleDebug('MYSQL: ' + CreateTable) cursor.execute(CreateTable) ConsoleDebug('Current Daily: ' + MySQL_Tables['MySQLTable_Daily']) ConsoleDebug('Current Weekly: ' + MySQL_Tables['MySQLTable_Weekly']) ConsoleDebug('Current Monthly: ' + MySQL_Tables['MySQLTable_Monthly']) def VisualLocationSetup(first,kind): global VisualLocation now = datetime.now().strftime("%m_%d_%Y__%I_%M_%S%p") runninglocation = str(os.getcwd()) if first == True: ConsoleDebug('Creating Video Directory') if not os.path.exists(runninglocation + '/videos/'): os.makedirs(runninglocation + '/videos/') ConsoleDebug('Video Directory Created') else: ConsoleDebug('Video Directory Already Exists') ConsoleDebug('Creating Daily Video Directory') if not os.path.exists(runninglocation + '/videos/dailys/'): os.makedirs(runninglocation + '/videos/dailys/') else: ConsoleDebug('Daily Video Directory Already Exists') ConsoleDebug('Creating Image Directory') if not os.path.exists(runninglocation + '/images/'): os.makedirs(runninglocation + '/images/') else: ConsoleDebug('Image Directory Already Exists') ConsoleDebug('Creating Daily Image Directory') if not os.path.exists(runninglocation + '/images/dailys/'): os.makedirs(runninglocation + '/images/dailys/') else: ConsoleDebug('Daily Image Directory Already Exists') ConsoleDebug('Creating Graph Directory') if not os.path.exists(runninglocation + '/graphs/'): os.makedirs(runninglocation + '/graphs/') else: ConsoleDebug('Graph Directory Already Exists') ConsoleDebug('Updating All Current Visual Directories') VisualLocation = {'CurrentImageDirectory' : runninglocation + '/images/dailys/' + 'CurrentImageDirectory_' + now + '/' , 'CurrentVideoDirectory' : runninglocation + '/videos/dailys/' + 'CurrentVideoDirectory_' + now + '/' , 'CurrentGraphDirectory' : runninglocation + '/graphs/' + 'CurrentGraphDirectory_' + now + '/' } for i in VisualLocation.itervalues(): ConsoleDebug('Making Directory: ' + i) os.makedirs(i) if first == False: ConsoleDebug('Updating Location Of ' + kind + ' Directory') if kind == 'Image': VisualLocation['CurrentImageDirectory'] = runninglocation + '/images/dailys/' + 'CurrentImageDirectory_' + now + '/' ConsoleDebug('Making Directory: ' + VisualLocation['CurrentImageDirectory']) os.makedirs(VisualLocation['CurrentImageDirectory']) elif kind == 'Video': VisualLocation['CurrentVideoDirectory'] = runninglocation + '/videos/dailys/' + 'CurrentVideoDirectory_' + now + '/' ConsoleDebug('Making Directory: ' + VisualLocation['CurrentVideoDirectory']) os.makedirs(VisualLocation['CurrentVideoDirectory']) elif kind == 'Graph': VisualLocation['CurrentGraphDirectory'] = runninglocation + '/graphs/' + 'CurrentGraphDirectory_' + now + '/' ConsoleDebug('Making Directory: ' + VisualLocation['CurrentGraphDirectory']) os.makedirs(VisualLocation['CurrentGraphDirectory']) ConsoleDebug('Current Image Directory' + VisualLocation['CurrentImageDirectory']) ConsoleDebug('Current Video Directory' + VisualLocation['CurrentVideoDirectory']) ConsoleDebug('Current Graph Directory' + VisualLocation['CurrentGraphDirectory']) return 0 #this function can be used to find out the ADC value on ADC 0 def ReadADC0(adcnum_0): if adcnum_0 > 7 or adcnum_0 < 0: return -1 r_0 = spi_0.xfer2([1, 8 + adcnum_0 << 4, 0]) adcout_0 = ((r_0[1] & 3) << 8) + r_0[2] return adcout_0 #this function can be used to find out the ADC value on ADC 1 def ReadADC1(adcnum_1): if adcnum_1 > 7 or adcnum_1 < 0: return -1 r_1 = spi_1.xfer2([1, 8 + adcnum_1 << 4, 0]) adcout_1 = ((r_1[1] & 3) << 8) + r_1[2] return adcout_1 #this function converts a given value from the ADC and turns it into usable data def ConvertADC(adcinput,unit): millivolts = adcinput*(3300.0/1024.0) #converts the ADC value to milivolts temp_c = ((millivolts - 100.0)/10)-40.0 percent = (adcinput/1024.0)*100 if unit == 'c' : #used for a temperature sensor to return Celsius return temp_c elif unit == 'f' : #used for a temperature sensor to return Fahrenheit temp_f = (temp_c * 9.0 / 5.0) + 32 return temp_f elif unit == 'mV': return millivolts elif unit == '%': return percent else: print "ConvertADC input error" return 0 return 0 #returns a usable numerical value from the ADC def PollSensor(sensor,unit,precision,samples): GPIO.output(pins['MST_Enable'], True) if PiPlanterFull == True: #Full PiPlanter sensors = {\ 'P_TMP0' : ConvertADC(ReadADC0(0),unit),\ 'P_MST0' : ConvertADC(ReadADC0(1),unit),\ 'P_TMP1' : ConvertADC(ReadADC0(2),unit),\ 'P_MST1' : ConvertADC(ReadADC0(3),unit),\ 'P_TMP2' : ConvertADC(ReadADC0(4),unit),\ 'P_MST2' : ConvertADC(ReadADC0(5),unit),\ 'P_TMP3' : ConvertADC(ReadADC0(6),unit),\ 'P_MST3' : ConvertADC(ReadADC0(7),unit),\ 'A_TMP0' : ConvertADC(ReadADC1(0),unit),\ 'A_LDR0' : ConvertADC(ReadADC1(1),unit),\ 'A_LDR1' : ConvertADC(ReadADC1(2),unit),\ 'A_MST0' : ConvertADC(ReadADC1(3),unit)} else: #Simple PiPlanter sensors = {\ 'P_MST0' : ConvertADC(ReadADC0(0),unit),\ 'P_MST1' : ConvertADC(ReadADC0(1),unit),\ 'A_TMP0' : ConvertADC(ReadADC0(2),unit),\ 'A_LDR0' : ConvertADC(ReadADC0(3),unit)} outputsum = 0 for x in range(0,samples): #An averaging algorithm that creates a more precise reading outputsum = outputsum + sensors[sensor] output = round(outputsum/samples, precision) GPIO.output(pins['MST_Enable'], False) return output #samples all sensors, outputs different formats of the data to be used in other places in the program def SampleAllSensors(sensor_precision,sensor_samples,form,Full): global MySQL_Tables if Full == True: #Full PiPlanter current_sensors = {\ 'P_TMP0' : PollSensor('P_TMP0' , 'f', sensor_precision, sensor_samples),\ 'P_MST0' : PollSensor('P_MST0' , '%', sensor_precision, sensor_samples),\ 'P_TMP1' : PollSensor('P_TMP1' , 'f', sensor_precision, sensor_samples),\ 'P_MST1' : PollSensor('P_MST1' , '%', sensor_precision, sensor_samples),\ 'P_TMP2' : PollSensor('P_TMP2' , 'f', sensor_precision, sensor_samples),\ 'P_MST2' : PollSensor('P_MST2' , '%', sensor_precision, sensor_samples),\ 'P_TMP3' : PollSensor('P_TMP3' , 'f', sensor_precision, sensor_samples),\ 'P_MST3' : PollSensor('P_MST3' , '%', sensor_precision, sensor_samples),\ 'A_TMP0' : PollSensor('A_TMP0' , 'f', sensor_precision, sensor_samples),\ 'A_LDR0' : PollSensor('A_LDR0' , '%', sensor_precision, sensor_samples),\ 'A_LDR1' : PollSensor('A_LDR1' , '%', sensor_precision, sensor_samples),\ 'A_MST0' : PollSensor('A_MST0' , '%', sensor_precision, sensor_samples)} else: #Simple PiPlanter current_sensors = {\ 'P_MST0' : PollSensor('P_MST0' , '%', sensor_precision, sensor_samples),\ 'P_MST1' : PollSensor('P_MST1' , '%', sensor_precision, sensor_samples),\ 'A_TMP0' : PollSensor('A_TMP0' , 'f', sensor_precision, sensor_samples),\ 'A_LDR0' : PollSensor('A_LDR0' , '%', sensor_precision, sensor_samples)} if form == 'MySQL': if Full == True: #Full PiPlanter cursor.execute("INSERT INTO " + MySQL_Tables['MySQLTable_Daily'] + "(Time, P_TMP0, P_MST0, P_TMP1, P_MST1, P_TMP2, P_MST2, P_TMP3, P_MST3, A_TMP0, A_LDR0, A_LDR1, A_MST0)" + " VALUES(NOW()" + "," + str(current_sensors['P_TMP0']) + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_TMP1']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['P_TMP2']) + "," + str(current_sensors['P_MST2']) + "," + str(current_sensors['P_TMP3']) + "," + str(current_sensors['P_MST3']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + "," + str(current_sensors['A_LDR1']) + "," + str(current_sensors['A_MST0']) + ")" ) user.commit() cursor.execute("INSERT INTO " + MySQL_Tables['MySQLTable_Weekly'] + "(Time, P_TMP0, P_MST0, P_TMP1, P_MST1, P_TMP2, P_MST2, P_TMP3, P_MST3, A_TMP0, A_LDR0, A_LDR1, A_MST0)" + " VALUES(NOW()" + "," + str(current_sensors['P_TMP0']) + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_TMP1']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['P_TMP2']) + "," + str(current_sensors['P_MST2']) + "," + str(current_sensors['P_TMP3']) + "," + str(current_sensors['P_MST3']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + "," + str(current_sensors['A_LDR1']) + "," + str(current_sensors['A_MST0']) + ")" ) user.commit() cursor.execute("INSERT INTO " + MySQL_Tables['MySQLTable_Monthly'] + "(Time, P_TMP0, P_MST0, P_TMP1, P_MST1, P_TMP2, P_MST2, P_TMP3, P_MST3, A_TMP0, A_LDR0, A_LDR1, A_MST0)" + " VALUES(NOW()" + "," + str(current_sensors['P_TMP0']) + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_TMP1']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['P_TMP2']) + "," + str(current_sensors['P_MST2']) + "," + str(current_sensors['P_TMP3']) + "," + str(current_sensors['P_MST3']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + "," + str(current_sensors['A_LDR1']) + "," + str(current_sensors['A_MST0']) + ")" ) user.commit() ConsoleDebug('MySQL Tables Updated Full') output = "INSERT INTO " + MySQL_Tables['MySQLTable_Monthly'] + "(Time, P_TMP0, P_MST0, P_TMP1, P_MST1, P_TMP2, P_MST2, P_TMP3, P_MST3, A_TMP0, A_LDR0, A_LDR1, A_MST0)" + " VALUES(NOW()" + "," + str(current_sensors['P_TMP0']) + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_TMP1']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['P_TMP2']) + "," + str(current_sensors['P_MST2']) + "," + str(current_sensors['P_TMP3']) + "," + str(current_sensors['P_MST3']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + "," + str(current_sensors['A_LDR1']) + "," + str(current_sensors['A_MST0']) + ")" else: #Simple PiPlanter cursor.execute("INSERT INTO " + MySQL_Tables['MySQLTable_Daily'] + "(Time, P_MST0, P_MST1, A_TMP0, A_LDR0)" + " VALUES(NOW()" + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + ")" ) user.commit() cursor.execute("INSERT INTO " + MySQL_Tables['MySQLTable_Weekly'] + "(Time, P_MST0, P_MST1, A_TMP0, A_LDR0)" + " VALUES(NOW()" + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + ")" ) user.commit() cursor.execute("INSERT INTO " + MySQL_Tables['MySQLTable_Monthly'] + "(Time, P_MST0, P_MST1, A_TMP0, A_LDR0)" + " VALUES(NOW()" + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + ")" ) user.commit() ConsoleDebug('MySQL Tables Updated Simple') output = "INSERT INTO " + MySQL_Tables['MySQLTable_Daily'] + "(Time, P_MST0, P_MST1, A_TMP0, A_LDR0)" + " VALUES(NOW()" + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + ")" elif form == 'Console': if Full == True: #Full PiPlanter output = 'Debug Update:' + ' P_TMP0: ' + str(str(current_sensors['P_TMP0'])) + ',' + ' P_MST0: ' + str(str(current_sensors['P_MST0'])) + ',' + ' P_TMP1: ' + str(str(current_sensors['P_TMP1'])) + ',' + ' P_MST1: ' + str(str(current_sensors['P_MST1'])) + ','+ ' P_TMP2: ' + str(str(current_sensors['P_TMP2'])) + ','+ ' P_MST2: ' + str(str(current_sensors['P_MST2'])) + ','+ ' P_TMP3: ' + str(str(current_sensors['P_TMP3'])) + ','+ ' P_MST3: ' + str(str(current_sensors['P_MST3'])) + ',' + ' A_TMP0: ' + str(str(current_sensors['A_TMP0'])) + ',' + ' A_LDR0: ' + str(str(current_sensors['A_LDR0'])) + ','+ ' A_LDR1: ' + str(str(current_sensors['A_LDR1'])) + ','+ ' A_MST0: ' + str(str(current_sensors['A_MST0'])) else: #Simple PiPlanter output = 'Debug Update:' + ' P_MST0: ' + str(str(current_sensors['P_MST0'])) + ',' + ' P_MST1: ' + str(str(current_sensors['P_MST1'])) + ',' + ' A_TMP0: ' + str(str(current_sensors['A_TMP0'])) + ',' + ' A_LDR0: ' + str(str(current_sensors['A_LDR0'])) elif form == 'Twitter': if Full == True: #Full PiPlanter output = 'Ambient LDR: ' + str(round(((current_sensors['A_LDR0'] + current_sensors['A_LDR1'])/2),1) ) + '%, ' + 'Ambient Tmp: ' + str(round(current_sensors['A_TMP0'],1)) + 'DF, ' + 'Average Plant Tmp: ' + str(round( (current_sensors['P_TMP0'] + current_sensors['P_TMP1'] + current_sensors['P_TMP2'] + current_sensors['P_TMP3'] )/4, sensor_precision-2)) + 'DF, ' + 'Ambient Mst: ' + str(round(current_sensors['A_MST0'],2)) + '%, ' + 'Average Plant Mst: ' + str(round( (current_sensors['P_MST0']+current_sensors['P_MST1']+ current_sensors['P_MST2']+ current_sensors['P_MST3'] )/4 ,1)) + '%' else: #Simple PiPlanter output = 'Ambient Light: ' + str(round((current_sensors['A_LDR0']),1)) + '%, ' + 'Ambient Temp: ' + str(round(current_sensors['A_TMP0'],1)) + 'DF, ' + 'Average Plant Mst: ' + str(round( (current_sensors['P_MST0']+current_sensors['P_MST1'])/2 ,1)) + '%' else: print "ConvertADC input SampleAllSensors" return 0 return output #pumps a given amount of water from a given pump def PumpWater(pump,volume): LPM = 4.00 #L per minute ontime = volume*(60/LPM) ConsoleDebug('PUMP ON') GPIO.output(pumps[pump],True) time.sleep(ontime) GPIO.output(pumps[pump],False) ConsoleDebug('PUMP OFF') output = 'Pumped ' + str(volume) + ' L Of Water Into Plants In ' + str(ontime) + ' Seconds' ConsoleDebug(output) return output def Image(dir,cycle,high_quality): image = dir + str(cycle).zfill(4) + '.jpg' if high_quality == False: picture_command = 'raspistill -q 41 -o ' + image if high_quality == True: picture_command = 'raspistill -q 100 -o ' + image os.system(picture_command) ConsoleDebug('Image Captured, High Quality = ' + str(high_quality) + ', Image: ' + str(image)) return image def RenderGraph(table,location): ConsoleDebug('Rendering Graph') rendercommand = 'php ' + str(os.getcwd()) + '/pChartRender_1_0_5.php ' + table + ' ' + location ConsoleDebug('Running Command: ' + rendercommand) proc = subprocess.Popen(rendercommand, shell=True, stdout=subprocess.PIPE) script_response = proc.stdout.read() ConsoleDebug('Output File: ' + script_response) ConsoleDebug('Rendering Complete') return script_response def TryTweet(image, imagelocation, text): i = 0 while i < 500: try: ConsoleDebug('Attempt [' + str(i) + '] To Tweet: ' + text + ' , image = ' + str(image)) if image == True: output = api.update_with_media(imagelocation, text) if image == False: output = api.update_status(text) break except tweepy.error.TweepError as e: ConsoleDebug('Tweet Failed, Retrying') ConsoleDebug('Twitter Error: ' + str(e)) i = i + 1 time.sleep(15) ConsoleDebug('Tweet Sent After ' + str(i) + ' Attempts, Details: Actual Text [ ' + str(output.text) + '] URL: https://twitter.com/piplanter_bot/status/' + str(output.id) ) def RenderVideo(infolder,outfolder): outputfile = outfolder + str(datetime.now().strftime("%m_%d_%Y__%I_%M_%S%p")) + '_VIDEO.avi' ConsoleDebug('Attempting To Render: ' + outputfile) render_command = 'sudo mencoder mf://' + str(infolder) + '*.jpg -nosound -ovc lavc -lavcopts vcodec=mpeg4:aspect=16/9:vbitrate=8000000 -vf scale=1920:1080 -mf type=jpeg:fps=15 -o ' + outputfile os.system(render_command) ConsoleDebug('Render Complete, File: ' + outputfile) return outputfile def FifteenMinutes(): global cycle SampleAllSensors(1,1000,'MySQL',False) ConsoleDebug(SampleAllSensors(5,1000,'Console',False)) image = Image(VisualLocation['CurrentImageDirectory'],cycle,False) tweet = SampleAllSensors(3,20,'Twitter',False) + " https://esologic.com/?page_id=1042" TryTweet(True,image,tweet) cycle = cycle + 1 def ThreeHours(): graphlocation = RenderGraph(MySQL_Tables['MySQLTable_Daily'],VisualLocation['CurrentGraphDirectory']) tweet = 'Graph of day so far: Moisture % - Blue, Ambient Light % - Yellow, Temp DF - Red https://esologic.com/?page_id=1042' TryTweet(True,graphlocation,tweet) def Daily(): graphlocation = RenderGraph(MySQL_Tables['MySQLTable_Daily'],VisualLocation['CurrentGraphDirectory']) MySQLTableSetup(False,'Daily',False) tweet = 'Graph of Previous 24 Hours: Moisture % - Blue, Ambient Light % - Yellow, Temp DF - Red https://esologic.com/?page_id=1042' TryTweet(True,graphlocation,tweet) tweet2 = PumpWater('PUMP0',1.5) TryTweet(False,'',tweet2) RenderVideo(VisualLocation['CurrentImageDirectory'],VisualLocation['CurrentVideoDirectory']) def Weekly(): graphlocation = RenderGraph(MySQL_Tables['MySQLTable_Weekly'],VisualLocation['CurrentGraphDirectory']) tweet = 'Graph of Previous 3 Days: Moisture % - Blue, Ambient Light % - Yellow, Temp DF - Red https://esologic.com/?page_id=1042' TryTweet(True,graphlocation,tweet) MySQLTableSetup(False,'Daily',False) if __name__ == '__main__': global MySQL_Tables global VisualLocation consumer_key="" consumer_secret="" access_token="" access_token_secret="" auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) GPIO.setmode(GPIO.BOARD) pins = {'MST_Enable' : 8} #assign names to GPIO pins for d in pins.itervalues(): GPIO.setup(d,GPIO.OUT) pumps = {'PUMP0' : 7, 'PUMP1' : 11, 'PUMP2' : 13, 'PUMP3' : 16} #assign names to GPIO pins for k in pumps.itervalues(): GPIO.setup(k,GPIO.OUT) #first ADC setup on SPI port 1 spi_1 = spidev.SpiDev() spi_1.open(0, 1) #first ADC setup on SPI port 0 spi_0 = spidev.SpiDev() spi_0.open(0, 0) PiPlanterFull = False user = MySQLdb.connect(host="localhost",user="root",passwd="") cursor = user.cursor() scheduler = Scheduler(standalone=True) scheduler.add_interval_job(FifteenMinutes, minutes = 15) scheduler.add_interval_job(ThreeHours, hours = 3) scheduler.add_interval_job(Daily, days=1) scheduler.add_interval_job(Weekly, days=3) try: FirstTimeSetup() PumpWater('PUMP0',3) scheduler.start() except (KeyboardInterrupt, SystemExit): pass
Note the distinct lack of comments. I will put out a much more polished version of the code when it’s done. Before I move onto things like a web UI etc, I would like to do a few more things with this standalone version. The above version renders videos into time lapses, I would like to be able to upload those videos somewhere, hopefully youtube. I would also like to be able to email the log file to the user daily, which should be easier than uploading videos to youtube.
The script that renders the MySQL data into a graph is the following, it on the other hand has not changed much at all since last year and is still the best method to render graphs like I want to:
<?php /* Include all the classes */ include("/srv/www/lib/pChart/class/pData.class.php"); include("/srv/www/lib/pChart/class/pDraw.class.php"); include("/srv/www/lib/pChart/class/pImage.class.php"); $myData = new pData(); /* Create your dataset object */ $db = mysql_connect("localhost", "", ""); //location of server, db username, db pass mysql_select_db("PiPlanter_Database", $db); $Requete = "SELECT * FROM DailyTable07_11_2014__04_05_09PM"; $Result = mysql_query($Requete, $db); /*This fetches the data from the mysql database, and adds it to pchart as points*/ while($row = mysql_fetch_array($Result)) { $Time = $row["Time"]; $myData->addPoints($Time,"Time"); $P_MST0 = $row["P_MST0"]; $myData->addPoints($P_MST0,"P_MST0"); $P_MST1 = $row["P_MST1"]; $myData->addPoints($P_MST1,"P_MST1"); $A_TMP0 = $row["A_TMP0"]; $myData->addPoints($A_TMP0,"A_TMP0"); $A_LDR0 = $row["A_LDR0"]; $myData->addPoints($A_LDR0,"A_LDR0"); } $myData-> setSerieOnAxis("P_MST0", 2); $myData-> setSerieOnAxis("P_MST1", 2); $myData-> setAxisName(2, "Relative Moisture [%]"); $myData-> setSerieOnAxis("A_TMP0", 0); //assigns the data to the first axis $myData-> setAxisName(0, "Degrees [F]"); //adds the label to the first axis $myData-> setSerieOnAxis("A_LDR0", 1); $myData-> setAxisName(1, "Ambient Light Level [%]"); $myData->setAbscissa("Time"); //sets the time data set as the x axis label $myData-> setSerieWeight("P_MST0",1); //draws the line thickness $myData->setPalette("P_MST0",array("R"=>58,"G"=>95,"B"=>205,"Alpha"=>80)); //sets the line color $myData-> setSerieWeight("P_MST1",1); $myData->setPalette("P_MST1",array("R"=>39,"G"=>64,"B"=>139,"Alpha"=>80)); $myData-> setSerieWeight("A_LDR0",2); $myData-> setSerieTicks("A_LDR0", 4); $myData-> setSerieWeight("A_TMP0",2); $myData-> setSerieTicks("A_TMP0", 4); $myPicture = new pImage(4000,500,$myData); /* Create a pChart object and associate your dataset */ $myPicture->setFontProperties(array("FontName"=>"/srv/www/lib/pChart/fonts/pf_arma_five.ttf","FontSize"=>6)); /* Choose a nice font */ $myPicture->setGraphArea(130,40,3900,300); /* Define the boundaries of the graph area */ $myPicture->drawScale(array("LabelRotation"=>320)); /* Draw the scale, keep everything automatic */ $Settings = array("R"=>250, "G"=>250, "B"=>250, "Dash"=>1, "DashR"=>0, "DashG"=>0, "DashB"=>0); /*The combination makes a cool looking graph*/ $myPicture->drawPlotChart(array("DisplayValues"=>TRUE)); $myPicture->drawLineChart(); $myPicture->drawLegend(30,320); //adds the legend //$date-> date("d-M-Y:H:i:s"); //$myPicture->autoOutput(); /* Build the PNG file and send it to the web browser */ $myPicture->render("/home/pi/PiPlanter2/graphs/".date("d-M-Y_H:i:s").".png"); ?>
Here are some photos of the current setup, it hasn’t changed much since last time:
Thank you very much for reading.
PiPlanter 2 | New Code Version / Temporary Setup
Hello! Here are some images of the new grow setup:
and here is the working version of the code:
import time from time import sleep from time import strftime import tweepy consumer_key="" consumer_secret="" access_token="" access_token_secret="" auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) PiPlanter_Full = False import logging logging.basicConfig() from apscheduler.scheduler import Scheduler import os import sys import RPi.GPIO as GPIO GPIO.setmode(GPIO.BOARD) # Start of mysql setup import MySQLdb user = MySQLdb.connect(host="localhost",user="root",passwd="") cursor = user.cursor() MySQLdb_Name = 'PiPlanter' + strftime("_%m_%d_%Y_%I_%M_%S%p") mysql_table_name = MySQLdb_Name + '_table' mysql_create = 'CREATE DATABASE IF NOT EXISTS PiPlanter' mysql_grant = "GRANT ALL ON `" + MySQLdb_Name + "`.* TO 'piplanter'@'localhost' IDENTIFIED BY 'password'" mysql_use = 'USE PiPlanter' if PiPlanter_Full == True: #Full PiPlanter mysql_table = "CREATE TABLE " + mysql_table_name + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))" else: #Simple PiPlanter mysql_table = "CREATE TABLE " + mysql_table_name + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))" #A new database must be created each time the program runs cursor.execute(mysql_create) cursor.execute(mysql_grant) cursor.execute(mysql_use) cursor.execute(mysql_table) pins = {'MST_Enable' : 8} #assign names to GPIO pins for d in pins.itervalues(): GPIO.setup(d,GPIO.OUT) #first ADC setup on SPI port 1 import spidev spi_1 = spidev.SpiDev() spi_1.open(0, 1) #first ADC setup on SPI port 0 import spidev spi_0 = spidev.SpiDev() spi_0.open(0, 0) #this function can be used to find out the ADC value on ADC 0 def readadc_0(adcnum_0): if adcnum_0 > 7 or adcnum_0 < 0: return -1 r_0 = spi_0.xfer2([1, 8 + adcnum_0 << 4, 0]) adcout_0 = ((r_0[1] & 3) << 8) + r_0[2] return adcout_0 #this function can be used to find out the ADC value on ADC 1 def readadc_1(adcnum_1): if adcnum_1 > 7 or adcnum_1 < 0: return -1 r_1 = spi_1.xfer2([1, 8 + adcnum_1 << 4, 0]) adcout_1 = ((r_1[1] & 3) << 8) + r_1[2] return adcout_1 #this function converts a given value from the ADC and turns it into usable data def convertadc(adcinput,unit): millivolts = adcinput*(3300.0/1024.0) #converts the ADC value to milivolts temp_c = ((millivolts - 100.0)/10)-40.0 percent = (adcinput/1024.0)*100 if unit == 'c' : #used for a temperature sensor to return Celsius return temp_c elif unit == 'f' : #used for a temperature sensor to return Fahrenheit temp_f = (temp_c * 9.0 / 5.0) + 32 return temp_f elif unit == 'mV': return millivolts elif unit == '%': return percent else: print "convertadc input error" return 0 #returns a usable numerical value from the ADC def pollsensor(sensor,unit,precision,samples): GPIO.output(pins['MST_Enable'], True) if PiPlanter_Full == True: #Full PiPlanter sensors = {\ 'P_TMP0' : convertadc(readadc_0(0),unit),\ 'P_MST0' : convertadc(readadc_0(1),unit),\ 'P_TMP1' : convertadc(readadc_0(2),unit),\ 'P_MST1' : convertadc(readadc_0(3),unit),\ 'P_TMP2' : convertadc(readadc_0(4),unit),\ 'P_MST2' : convertadc(readadc_0(5),unit),\ 'P_TMP3' : convertadc(readadc_0(6),unit),\ 'P_MST3' : convertadc(readadc_0(7),unit),\ 'A_TMP0' : convertadc(readadc_1(0),unit),\ 'A_LDR0' : convertadc(readadc_1(1),unit),\ 'A_LDR1' : convertadc(readadc_1(2),unit),\ 'A_MST0' : convertadc(readadc_1(3),unit)} else: #Simple PiPlanter sensors = {\ 'P_MST0' : convertadc(readadc_0(0),unit),\ 'P_MST1' : convertadc(readadc_0(1),unit),\ 'A_TMP0' : convertadc(readadc_0(2),unit),\ 'A_LDR0' : convertadc(readadc_0(3),unit)} outputsum = 0 for x in range(0,samples): #An averaging algorithm that creates a more precise reading outputsum = outputsum + sensors[sensor] output = round(outputsum/samples, precision) GPIO.output(pins['MST_Enable'], False) return output #samples all sensors, outputs different formats of the data to be used in other places in the program def sampleallsensors(sensor_precision,sensor_samples,form): if PiPlanter_Full == True: #Full PiPlanter current_sensors = {\ 'P_TMP0' : pollsensor('P_TMP0' , 'f', sensor_precision, sensor_samples),\ 'P_MST0' : pollsensor('P_MST0' , '%', sensor_precision, sensor_samples),\ 'P_TMP1' : pollsensor('P_TMP1' , 'f', sensor_precision, sensor_samples),\ 'P_MST1' : pollsensor('P_MST1' , '%', sensor_precision, sensor_samples),\ 'P_TMP2' : pollsensor('P_TMP2' , 'f', sensor_precision, sensor_samples),\ 'P_MST2' : pollsensor('P_MST2' , '%', sensor_precision, sensor_samples),\ 'P_TMP3' : pollsensor('P_TMP3' , 'f', sensor_precision, sensor_samples),\ 'P_MST3' : pollsensor('P_MST3' , '%', sensor_precision, sensor_samples),\ 'A_TMP0' : pollsensor('A_TMP0' , 'f', sensor_precision, sensor_samples),\ 'A_LDR0' : pollsensor('A_LDR0' , '%', sensor_precision, sensor_samples),\ 'A_LDR1' : pollsensor('A_LDR1' , '%', sensor_precision, sensor_samples),\ 'A_MST0' : pollsensor('A_MST0' , '%', sensor_precision, sensor_samples)} else: #Simple PiPlanter current_sensors = {\ 'P_MST0' : pollsensor('P_MST0' , '%', sensor_precision, sensor_samples),\ 'P_MST1' : pollsensor('P_MST1' , '%', sensor_precision, sensor_samples),\ 'A_TMP0' : pollsensor('A_TMP0' , 'f', sensor_precision, sensor_samples),\ 'A_LDR0' : pollsensor('A_LDR0' , '%', sensor_precision, sensor_samples)} if form == 'MySQL': if PiPlanter_Full == True: #Full PiPlanter output = "INSERT INTO " + mysql_table_name + "(Time, P_TMP0, P_MST0, P_TMP1, P_MST1, P_TMP2, P_MST2, P_TMP3, P_MST3, A_TMP0, A_LDR0, A_LDR1, A_MST0)" + " VALUES(NOW()" + "," + str(current_sensors['P_TMP0']) + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_TMP1']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['P_TMP2']) + "," + str(current_sensors['P_MST2']) + "," + str(current_sensors['P_TMP3']) + "," + str(current_sensors['P_MST3']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + "," + str(current_sensors['A_LDR1']) + "," + str(current_sensors['A_MST0']) + ")" else: #Simple PiPlanter output = "INSERT INTO " + mysql_table_name + "(Time, P_MST0, P_MST1, A_TMP0, A_LDR0)" + " VALUES(NOW()" + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + ")" elif form == 'Console': if PiPlanter_Full == True: #Full PiPlanter output = 'Debug Update:' + ' P_TMP0: ' + str(str(current_sensors['P_TMP0'])) + ',' + ' P_MST0: ' + str(str(current_sensors['P_MST0'])) + ',' + ' P_TMP1: ' + str(str(current_sensors['P_TMP1'])) + ',' + ' P_MST1: ' + str(str(current_sensors['P_MST1'])) + ','+ ' P_TMP2: ' + str(str(current_sensors['P_TMP2'])) + ','+ ' P_MST2: ' + str(str(current_sensors['P_MST2'])) + ','+ ' P_TMP3: ' + str(str(current_sensors['P_TMP3'])) + ','+ ' P_MST3: ' + str(str(current_sensors['P_MST3'])) + ',' + ' A_TMP0: ' + str(str(current_sensors['A_TMP0'])) + ',' + ' A_LDR0: ' + str(str(current_sensors['A_LDR0'])) + ','+ ' A_LDR1: ' + str(str(current_sensors['A_LDR1'])) + ','+ ' A_MST0: ' + str(str(current_sensors['A_MST0'])) else: #Simple PiPlanter output = 'Debug Update:' + ' P_MST0: ' + str(str(current_sensors['P_MST0'])) + ',' + ' P_MST1: ' + str(str(current_sensors['P_MST1'])) + ',' + ' A_TMP0: ' + str(str(current_sensors['A_TMP0'])) + ',' + ' A_LDR0: ' + str(str(current_sensors['A_LDR0'])) elif form == 'Twitter': if PiPlanter_Full == True: #Full PiPlanter output = 'Ambient LDR: ' + str(round(((current_sensors['A_LDR0'] + current_sensors['A_LDR1'])/2),1) ) + '%, ' + 'Ambient Tmp: ' + str(round(current_sensors['A_TMP0'],1)) + 'DF, ' + 'Average Plant Tmp: ' + str(round( (current_sensors['P_TMP0'] + current_sensors['P_TMP1'] + current_sensors['P_TMP2'] + current_sensors['P_TMP3'] )/4, sensor_precision-2)) + 'DF, ' + 'Ambient Mst: ' + str(round(current_sensors['A_MST0'],2)) + '%, ' + 'Average Plant Mst: ' + str(round( (current_sensors['P_MST0']+current_sensors['P_MST1']+ current_sensors['P_MST2']+ current_sensors['P_MST3'] )/4 ,1)) + '%' else: #Simple PiPlanter output = 'Ambient Light: ' + str(round((current_sensors['A_LDR0']),1)) + '%, ' + 'Ambient Temp: ' + str(round(current_sensors['A_TMP0'],1)) + 'DF, ' + 'Average Plant Mst: ' + str(round( (current_sensors['P_MST0']+current_sensors['P_MST1'])/2 ,1)) + '%' else: print "convertadc input sampleallsensors" return 0 return output pumps = {'PUMP0' : 7, 'PUMP1' : 11, 'PUMP2' : 13, 'PUMP3' : 16} #assign names to GPIO pins for k in pumps.itervalues(): GPIO.setup(k,GPIO.OUT) #pumps a given amount of water from a given pump def pumpwater(pump,volume): LPM = 4.00 #L per minute ontime = volume*(60/LPM) GPIO.output(pumps[pump],True) time.sleep(ontime) GPIO.output(pumps[pump],False) output = 'Pumped ' + str(volume) + ' L of water into plants in ' + str(ontime) + ' seconds.' return output #Sets up proper directories for folders and images def visualssetup(time): #checks if directories above exist if not os.path.exists(str(os.getcwd()) + '/videos/'): os.makedirs(str(os.getcwd()) + '/videos/') if not os.path.exists(str(os.getcwd()) + '/videos/dailys/'): os.makedirs(str(os.getcwd()) + '/videos/dailys/') if not os.path.exists(str(os.getcwd()) + '/images/'): os.makedirs(str(os.getcwd()) + '/images/') if not os.path.exists(str(os.getcwd()) + '/images/dailys/'): os.makedirs(str(os.getcwd()) + '/images/dailys/') global current_dailypicdir current_dailypicdir = str(os.getcwd()) + '/images/dailys/' + str(time) + '/' os.makedirs(current_dailypicdir) global current_dailyvideodir current_dailyvideodir = str(os.getcwd()) + '/videos/dailys/' + str(time) + '/' os.makedirs(current_dailyvideodir) def picture(dir,cycle): image = dir + str(cycle).zfill(4) + '.jpg' picture_command = 'raspistill -o ' + dir + str(cycle).zfill(4) + '.jpg' os.system(picture_command) return image def rendervideo(): time = strftime("%m-%d-%Y_%I-%M-%S%p") global current_videodir scheduler.shutdown(shutdown_threadpool=False) render_command = 'sudo mencoder -nosound mf://' + current_dailypicdir + '*.jpg -mf w=2592:h=1944:type=jpg:fps=15 -ovc lavc -lavcopts vcodec=mpeg4:vbitrate=2160000:mbd=2:keyint=132:v4mv:vqmin=3:lumi_mask=0.07:dark_mask=0.2:mpeg_quant:scplx_mask=0.1:tcplx_mask=0.1:naq -o ' + current_dailyvideodir + 'output.avi' os.system(render_command) def daily(): visualssetup(strftime("%m-%d-%Y_%I-%M-%S%p")) api.update_status(pumpwater('PUMP0',3)) global cycle cycle = 0 def hourly(): cursor.execute(sampleallsensors(3,20,'MySQL')) user.commit() print sampleallsensors(3,20,'Console') pumpwater('PUMP0', .5) global current_dailypicdir api.update_status(sampleallsensors(3,20,'Twitter') + " https://esologic.com/?page_id=1042") picture(current_dailypicdir,cycle) #pumpwater('PUMP0', 1) global cycle cycle = cycle + 1 if __name__ == '__main__': daily() hourly() scheduler = Scheduler(standalone=True) scheduler.add_interval_job(hourly, hours=1) scheduler.add_interval_job(daily, days=1) try: scheduler.start() except (KeyboardInterrupt, SystemExit): pass
I’ll do a much more thorough post when the project is further along. For those playing along at home, you can see that I’ve totally re-written the code for this new version. So far, it has much less functionality but much more stability and flexibility.
PiPlanter 2 | Another Plant Update
They’re getting bigger!
Smart Speaker | Modifications and Repair of Lepai LP-A6FM/USB
When trying to charge a cellphone via the USB port on the amplifier, I blew a power resistor and the 5v regulator on the amp. The following images show the repair process:
Smart Speaker | Battery Powered Working Prototype and USB charging
Here’s a video:
Not much further explanation needed for this post. The design process for delivering power to all components of the system is complete. The topology is pretty simple:
12v Battery -> switch on positive rail -> 5v Switching Regulator & 12v rail -> Amp & 5v Linear Regulator -> Arduino
If you have any questions, please let me know.
Smart Speaker | Full Working Prototype
Here is a video of the whole thing working:
The whole system works! If you look at this post, which basically shows the whole thing can be battery powered as well. The following photos show the way the cable is run out the back of the housing. Both sets of the 3 wires are tied together and then to the output of the digital pot:
Contrary to what I thought, the 10k ohm digital pot can change the volume just fine! To be safe though, I ordered an SPI digital Pot that can do 50k ohm resistance.
Here is the new working version of the code as well:
#include <SPI.h> //for using the digital pot const int slaveSelectPin = 10; //for SPI, from example code //Shift Register Setup, taken from www.bildr.og int SER_Pin = 6; //pin 14 on the 75HC595 int RCLK_Pin = 7; //pin 12 on the 75HC595 int SRCLK_Pin = 8; //pin 11 on the 75HC595 #define number_of_74hc595s 4 //How many of the shift registers - change this #define numOfRegisterPins number_of_74hc595s * 8 boolean registers[numOfRegisterPins]; int IR_rangefinder = 0; //The pin attached to the rangefinder int detect_led = 2; int setlevelMode0_led = 3; int serialDebug_switch = 4; //Throughout the program, this switch enables or disables all serial output int check_val = 3; //The arbitrary position above the sensor that indicates a "check" - the position that must be held in order to change the volume int cycle_delay = 30; //a universal delay time for refreshing the check functions void setup(){ //shift register setup pinMode(SER_Pin, OUTPUT); pinMode(RCLK_Pin, OUTPUT); pinMode(SRCLK_Pin, OUTPUT); clearRegisters(); writeRegisters(); //spi setup pinMode (slaveSelectPin, OUTPUT); SPI.begin(); //general LED's pinMode(detect_led, OUTPUT); pinMode(setlevelMode0_led, OUTPUT); pinMode(serialDebug_switch, INPUT); //Serial setup Serial.begin(9600); } //integers to remember values off of the IR sensor. int prelevel_0 = 0; int prelevel_1 = 0; int prelevel_2 = 0; int prelevel_3 = 0; int prelevel_4 = 0; int prelevel_5 = 0; int prelevel_6 = 0; int prelevel_7 = 0; int prelevel_8 = 0; int prelevel_9 = 0; int pre_positions[10] = {prelevel_0, prelevel_1, prelevel_2, prelevel_3, prelevel_4, prelevel_5, prelevel_6, prelevel_7, prelevel_8, prelevel_9}; // an array holding the positions void loop(){ /* The system works by sampling the sensor a number of times. It puts these values into an array. Once all sample have been made, each value is compared to a like value. If every && evaluates to true, this means whatever object above the sensor has been there for the "cycle_delay" * the number of comparisions made. It will confirm that the user wants their hand the be there and it was not acciential. Think of the following loop as the ambient mode, the user can't adjust the volume from here, but they can enter the mode where they can adjust the volume. It has much less precision by design. */ for(int i = 0; i <= 9; i = i + 1){ writebargraph(0,map(analogRead(IR_rangefinder),20,600,0,9)); pre_positions[i] = map(analogRead(IR_rangefinder),20,600,0,9); if(pre_positions[i] == check_val){ if(digitalRead(serialDebug_switch) == HIGH){ Serial.println("Check Detected"); } digitalWrite(detect_led, HIGH); } else { digitalWrite(detect_led, LOW); } delay(cycle_delay); } if(digitalRead(serialDebug_switch) == HIGH){ for(int i = 0; i <= 9; i = i + 1){ Serial.print(pre_positions[i]); Serial.print(","); } } //Once it has been determined that the object above the sensor has been there for a long enough time, the system enters the secondary level set mode. if (pre_positions[0] == check_val && pre_positions[1] == check_val && pre_positions[2] == check_val && pre_positions[3] == check_val && pre_positions[4] == check_val && pre_positions[5] == check_val && pre_positions[6] == check_val && pre_positions[7] == check_val && pre_positions[8] == check_val && pre_positions[9] == check_val ){ if(digitalRead(serialDebug_switch) == HIGH){ Serial.print(" - Pre Level Set"); Serial.println(""); } delay(500); setlevel(); delay(500); } else { if(digitalRead(serialDebug_switch) == HIGH){ Serial.println(" - No Set"); } } } void setlevel(){ /* Very similar to the above topology. This version is much more precise, and has 30 comparison samples as opposed to 10. It also writes to the digital potentiometer as well at the the same time as the bar graph. */ int level0 = 0; int level1 = 0; int level2 = 0; int level3 = 0; int level4 = 0; int level5 = 0; int level6 = 0; int level7 = 0; int level8 = 0; int level9 = 0; int level10 = 0; int level11 = 0; int level12 = 0; int level13 = 0; int level14 = 0; int level15 = 0; int level16 = 0; int level17 = 0; int level18 = 0; int level19 = 0; int level20 = 0; int level21 = 0; int level22 = 0; int level23 = 0; int level24 = 0; int level25 = 0; int level26 = 0; int level27 = 0; int level28 = 0; int level29 = 0; int positions[30] = { level0, level1, level2, level3, level4, level5, level6, level7, level8, level9, level10, level11, level12, level13, level14, level15, level16, level17, level18, level19, level20, level21, level22, level23, level24, level25, level26, level27, level28, level29}; digitalWrite(setlevelMode0_led, LOW); boolean seeking = true; while(seeking == true){ for(int i = 0; i <= 29; i = i + 1){ writebargraph(1,map(analogRead(IR_rangefinder),20,600,0,19)); digitalpot(map(analogRead(IR_rangefinder),20,600,0,255)); //Writes to digital pot positions[i] = map(analogRead(IR_rangefinder),20,600,0,19); if(digitalRead(serialDebug_switch) == HIGH){ Serial.print(positions[i]); Serial.print(","); } delay(cycle_delay); } //Instead of comparing to a predetermined value, it compares it to the first value sampled. If this if statement is true, it means the users hand has stopped moving, indicating they would like to set the volume at that position. if (positions[0] == positions[0] && positions[1] == positions[0] && positions[2] == positions[0] && positions[3] == positions[0] && positions[4] == positions[0] && positions[5] == positions[0] && positions[6] == positions[0] && positions[7] == positions[0] && positions[8] == positions[0] && positions[9] == positions[0] && positions[10] == positions[0] && positions[11] == positions[0] && positions[12] == positions[0] && positions[13] == positions[0] && positions[14] == positions[0] && positions[15] == positions[0] ){ if(digitalRead(serialDebug_switch) == HIGH){ Serial.print(" - Level Set"); } digitalWrite(setlevelMode0_led, HIGH); seeking = false; //Stops the loop and holds the last value on the bar graph and digital pot. } else { if(digitalRead(serialDebug_switch) == HIGH){ Serial.print(" - No Set"); } digitalWrite(setlevelMode0_led, LOW); } if(digitalRead(serialDebug_switch) == HIGH){ Serial.println(""); } } } //This function will write to the shift registers -> the bar graph. It will write all of the values below the one specified HIGH and all above LOW. It also allows multiple sets of bar graphs void writebargraph(int set, int led){ if(set == 0){ for(int i = 0; i <= 9; i = i + 1){ if(i <= led){ setRegisterPin(i, HIGH); writeRegisters(); } else if(i > led){ setRegisterPin(i, LOW); writeRegisters(); } } } if(set == 1){ for(int k = 10; k <= 29; k = k + 1){ if(k <= 10 + led){ setRegisterPin(k, HIGH); writeRegisters(); } else if(k > 10 + led){ setRegisterPin(k, LOW); writeRegisters(); } } } } //A very simple function to write values to the Digital Pot void digitalpot(int value){ digitalWrite(slaveSelectPin,LOW); SPI.transfer(0); // enables the chip SPI.transfer(value); digitalWrite(slaveSelectPin,HIGH); } //SHIFT REGISTER FUNCTIONS. //set all register pins to LOW void clearRegisters(){ for(int i = numOfRegisterPins - 1; i >= 0; i--){ registers[i] = LOW; } } //Set and display registers //Only call AFTER all values are set how you would like (slow otherwise) void writeRegisters(){ digitalWrite(RCLK_Pin, LOW); for(int i = numOfRegisterPins - 1; i >= 0; i--){ digitalWrite(SRCLK_Pin, LOW); int val = registers[i]; digitalWrite(SER_Pin, val); digitalWrite(SRCLK_Pin, HIGH); } digitalWrite(RCLK_Pin, HIGH); } //set an individual pin HIGH or LOW void setRegisterPin(int index, int value){ registers[index] = value; }
The only difference between this one and the last version I posted was the height of the check value. I made it further away from the sensor.
Before the code is “finished” I would like to add a few things. The first being an averaging loop in the raw input ; instead of just using variations of map(analogRead(IR_rangefinder),20,600,0,9);
each time, I’d like to maybe write my own function that is more general for assigning comparison. The downside to this however is that it may slow things down and the top priority with this project is keeping it fast and accurate.
Smart Speaker | Amp Teardown and Potentiometer Problem
Here are images of the teardown:
A couple of things to note: I over heated the pads when removing the gain pot and lifted a trace by accident. Instead of soldering directly into the lug hole, I just tied directly to the resistor that is in series with the pot signal.
I also am also not going to be able to use the digital pot I have been working with so far. Note the image that shows the pot with a resistance of 50k, and the one I’ve been working with is 10k.
I’m going to order a pair of these, and many of these to try and solve the bluetooth static problem.
Smart Speaker | Power System Proof Of Concept
Here’s a video:
This is very simple. Basically this whole thing will work like:
12v Battery -> Amp (5v Regulator) -> Arduino & Bluetooth & Cellphone Charger
I may have to add a separate linear regulator in order to get less noise on the bluetooth as seen in the video.